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The crystal structures of quinolinium 3-carboxy-4-hydroxy-

benzenesulfonate trihydrate, C9H8N+�C7H5O6Sÿ�3H2O, (I),

8-hydroxyquinolinium 3-carboxy-4-hydroxybenzenesulfonate

monohydrate, C9H8NO+�C7H5O6Sÿ�H2O, (II), 8-amino-

quinolinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate,

C9H9N2
+�C7H5O6Sÿ�2H2O, (III), and 2-carboxyquinolinium

3-carboxy-4-hydroxybenzenesulfonate quinolinium-2-carbox-

ylate, C10H8NO2
+�C7H5O6Sÿ�C10H7NO2, (IV), four proton-

transfer compounds of 5-sulfosalicylic acid with bicyclic

heteroaromatic Lewis bases, reveal in each the presence of

variously hydrogen-bonded polymers. In only one of these

compounds, viz. (II), is the protonated quinolinium group

involved in a direct primary N+ÐH� � �O(sulfonate) hydrogen-

bonding interaction, while in the other hydrates, viz. (I) and

(III), the water molecules participate in the primary

intermediate interaction. The quinaldic acid (quinoline-2-

carboxylic acid) adduct, (IV), exhibits cation±cation and

anion±adduct hydrogen bonding but no direct formal hetero-

molecular interaction other than a number of weak cation±

anion and cation±adduct �±� stacking associations. In all

other compounds, secondary interactions give rise to network

polymer structures.

Comment

We have previously reported the crystal structures of a

number of proton-transfer compounds of 3,5-dinitrosalicylic

acid (DNSA) with both monocyclic and polycyclic hetero-

aromatic Lewis bases (Smith et al., 1995, 1996; Smith,

Wermuth & Healy, 2003; Smith, Wermuth, Healy & White,

2003, 2004). In all of these compounds, the resulting aminium

cations subsequently form direct primary hydrogen-bonding

interactions with the carboxylate groups of the DNSA anions;

these interactions, together with secondary hydrogen bonding,

lead to the formation of both network and framework polymer

structures. The secondary interactions can be either strong

[OÐH� � �O or NÐH� � �O, depending on the nature of the

substituent group on the heterocyclic ring, e.g. with 8-amino-

quinoline (Smith, Wermuth Bott et al., 2001), 8-hydroxy-

quinoline (Smith, Wermuth & White, 2001) and quinaldic acid

(Smith, Wermuth, Healy & White, 2004)] or weak but exten-

sive [CÐH� � �O, e.g. with quinoline, 1,10-phenanthroline and

2,20-bipyridine (Smith, Wermuth, Healy & White, 2004)].

Cation±anion �±� stacking is rare and is almost exclusive to

the polycyclic aromatic Lewis bases, quinoline and 1,10-

phenanthroline (Smith, Wermuth, Healy & White, 2004).

With aromatic sulfonic acids, the acid strength is even

greater than that of DNSA (pKa = 2.2), so proton transfer will

occur on reaction of these acids with most Lewis bases.

Furthermore, with deprotonation of the sulfonate group, the

three O atoms provide an additional set of proton-accepting

centres for hydrogen-bonding associations, enhancing the

potential for self-assembly. The guanidinium salts of aromatic

sulfonates have been investigated as potentially useful optical

materials, generated because of the compatibility of their

adjacent NH donors with two of the sulfonate O-atom

acceptors, giving rise to a primary cyclic R2
2(8) interaction. This

interaction results in the assembly of hydrogen-bonded sheet

structures, which may have interlayer linkages through the

third sulfonate O atom, giving network polymer structures,

hopefully with induced asymmetry (Russell et al., 1994a,b).

For this initial structural study, we therefore chose

3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic

acid, 5-SSA), which has structural features similar to DNSA

and to the closer analogue 5-nitrosalicylic acid (5-NSA). These

acids have additional interactive substituent carboxylic acid

and phenol functional groups that lend themselves to

secondary n-dimensional hydrogen-bonding extension. Not

only is 5-SSA structurally similar to 5-NSA, but also the acid

strength of 5-SSA makes it capable of protonating water, and

several hydrated structures of the acid are known, viz. the

dihydrate (Attig & Mootz, 1977; Aliev et al., 1995), the

dideuterate (Attig & Williams, 1977), the trihydrate (Attig &

Mootz, 1977) and the pentahydrate (Merschenz-Quack &

Mootz, 1990). With many of these, protonated polyaqua

species have been identi®ed, for example, the H7O3
+ cation of

the trihydrate (Mootz & Fayos, 1970). This feature is consid-

ered to be responsible for the unusual conductivity properties

of the acid and many of its compounds, for example, with the

lanthanum, praseodymium and samarium sulfosalicylate

nonahydrates (Aliev, Atovmyan, Baranova & Pirkes, 1991;

Aliev, Baranova, Atovmyan, Pirkes et al., 1991). The structures

of the 5-SSA proton-transfer compounds with the Lewis bases

aniline (1:1; Bakasova et al., 1991), theophylline (a 1:1

monohydrate; Madarasz et al., 2002), trimethoprim (a 1:1

dihydrate; Raj et al., 2003) and 4,40-bipyridine (a 1:2 dihydrate;

Muthiah et al., 2003) are also known, while the structures of

two different guanidinium (GU) salts have also been reported

recently; the ®rst is that of anhydrous (GU)+�(5-SSA)ÿ

(Zhang et al., 2004), while the second is the hydrate 2(GU)+�-
(5-SSA)2ÿ�H2O (Smith, Wermuth & Healy, 2004). As well as

the chemical difference due to deprotonation of both the

organic compounds
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sulfonic and carboxylic acid groups of 5-SSA in the hydrate,

the expected cyclic R2
2(8) NÐH� � �O guanidinium±sulfonate

interactions (Russell et al., 1994a,b) are absent in the hydrate

but present in the anhydrate (Zhang et al., 2004).

The choice of Lewis bases for this study was in¯uenced by

experience with DNSA; the polycyclic aromatic analogues

were found to be particularly ef®cient in structure building

through both hydrogen bonding and, to a lesser extent,

cation±anion �±� associations. The nitrogen bases selected

were the parent bicyclic heteroaromatic quinoline (QUIN),

the common 8-subsituted quinolines 8-hydroxyquinoline

(oxine, 8-HQ) and 8-aminoquinoline (8-AQ), and quinoline-2-

carboxylic acid (quinaldic acid, QA). Of these, oxine has

proved most useful as a molecule with good structure-

extending ability, achieved through secondary hydrogen

bonding, forming both neutral and proton-transfer structures

as well as molecular adducts. With a number of these struc-

tures, the reactions occur readily in the solid state (Rastogi et

al., 1977; Singh et al., 1994, 1999, 2000). The crystal structures

of both the 1:1 and the 1:2 compound with salicylic acid (SA),

viz. (8-HQ)+�(SAÿ) (Singh et al., 2000; Smith, Wermuth &

White, 2003) and (8-HQ)+�(SA)ÿ�(SA) (Jebamony &

Muthiah, 1998), are known and both formation reactions

proceed in the solid state. Kemp's triacid (cis-cis-1,3,5-tri-

methylhexane-1,3,5-tricarboxylic acid) exhibits proton

transfer as well as the retention of a partial oxine molecule in

the crystal structure (Smith et al., 2000), while a series of six 1:1

compounds with the nitrobenzoic acids, including DNSA and

5-NSA (Smith, Wermuth & White, 2001), contains two

hydrates. We have also reported the structure of the guani-

dinium monohydrate salt of the analogous substituted oxine,

7-iodo-8-hydroxyquinolinesulfonic acid (ferron; Smith,

Wermuth & Healy, 2003), in which the hydrogen bonding is

extensive. Examples of neutral adducts are less common but

are found in the 1:1 complexes with chloranil (Prout &

Wheeler, 1967) and 1,3,5-trinitrobenzene (Castellano & Prout,

1971), while the compound with 1,2,3-trihydroxybenzene

(THB; Singh et al., 1994) is a 2:1 proton-transfer adduct [(8-

HQ)+�(THB)ÿ�(8-HQ)]. Few structures of proton-transfer

compounds of the other quinoline analogues used here have

been reported; for 8-AQ, they are limited to a series of

compounds with nitro-substituted carboxylic acids (Smith,

Wermuth, Bott et al., 2001), although the structure of the non-

transfer compound with Kemp's triacid is known (Smith et al.,

2000). For quinoline and quinaldic acid, the only known

examples are the 1:1 proton-transfer compounds with DNSA,

and in the quinoline structure, there is evidence of �±�
interaction (Smith, Wermuth, Healy & White, 2004).

The crystal structures reported here are those of the

5-sulfosalicylates with QUIN [quinolinium 5-sulfosalicylate

trihydrate, (QUIN)+�(5-SSA)ÿ�3H2O, (I)], 8-HQ [8-hydroxy-

quinolinium 5-sulfosalicylate monohydrate, (8-HQ)+�-
(5-SSA)ÿ�H2O, (II)] and 8-AQ [8-aminoquinolinium

5-sulfosalicylate dihydrate, (8-AQ)+�(5-SSA)ÿ�2H2O, (III)],

and the adduct structure with QA [quinolinium-2-carboxylic

acid 5-sulfosalicylate quinoline-2-carboxylic acid (1/1),

(QA)+�(5-SSA)ÿ�(QA), (IV)]. Fig. 1 shows the atom-

numbering scheme used for each of the four structures. All of

these examples involve proton transfer, but in only one

compound, viz. (II), is primary direct N+ÐH� � �O(sulfonate)

hydrogen bonding found; this situation contrasts with that

reported for the analogous series of compounds with DNSA

(Smith, Wermuth, Healy & White, 2004). There is no occur-

rence of the R2
2(8) dimer interaction found in the anhydrous

guanidinium sulfonates (Russell et al., 1994a,b; Zhang et al.,

2004) but absent in the bis(guanidinium) 5-sulfosalicylate

hydrate structure (Smith, Wermuth & Healy, 2004). The

presence of water of solvation in this last structure and in

compounds (I)±(III) of the current series (a feature that is rare

among the DNSA analogues) appears to be the main contri-

buting factor, resulting from a de®ciency of proton-donor

groups able to satisfy the additional acceptor requirements of

sulfonate O atoms. In the case of (IV) (in which, in addition,

there are 42 AÊ 3 solvent-free voids in the lattice, capable of

accommodating water molecules), the QA adduct molecule

also acts as both a donor and an acceptor, providing a struc-

ture in which there is no direct formal heteromolecular

interaction. However, (IV) exhibits signi®cant cation±anion

and cation±adduct �±� stacking interactions, while in (I),

there is �±� stacking but it is homomolecular, involving both

cation±cation and anion±anion stacking interactions. All other

structures exhibit extensive secondary hydrogen bonding,

utilizing the sulfonate acceptor O atoms, which results in

framework polymer structures. Tables 1±4 list the hydrogen-

bonding geometries for (I)±(IV) and the symmetry codes used

in the following discussion.

Compound (I) with quinoline, (QUIN)+�(5-SSA)ÿ�3H2O,

contains a 5-SSA anion with a rotationally disordered sulfon-

ate group [O51A±O53A and O51B ±O53B, with occupancies

0.74 (1):0.26 (1); Fig. 1a]. Only the three primary (A) sites are

considered in the discussion. These sites are involved in three

hydrogen-bonding interactions. Although none of these is a

direct N+ÐH� � �O(sulfonate) link, there is a primary interac-

tion between the quinolinium H atom and a water molecule

(N11� � �O1Wiv; Fig. 2). The H atoms of this water molecule

allow propagation of the structure through interactions with

sulfonate atom O53 and a second glide-related water molecule

(O3Wi). There is further extension via atom O3W through

both of its H atoms to different sulfonate O-atom acceptors

(O52A and O53Aiv). The third water molecule (O2W) links

sulfonate atom O51Aii of a 5-SSA anion with carboxylic acid

atom O72iii and serves as an acceptor for another 5-SSA

organic compounds
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carboxyl H atom (O71ÐH7� � �O2Wv). Both the 5-SSA anions

and the QUIN cations form homomolecular stacks along the b

direction, with a separation of b/2 (3.613 AÊ ), a distance indi-

cative of signi®cant �±� interactions. The result is a three-

dimensional framework polymer.

In the 8-HQ compound [(8-HQ)+�(5-SSA)ÿ�H2O], (II)

(Fig. 1b), there is a direct N+ÐH� � �O(sulfonate) interaction

(N11� � �O53viii). The 8-hydroxy substituent group of the 8-HQ

cation is associated intermolecularly with only the solvent

water molecule (O1W) but has an usual intramolecular asso-

ciation with quinolinium atom H11. The water H atoms extend

the structure via different sulfonate groups (O1W� � �O51vi and

O1W� � �O52vii), while the fourth formal hydrogen bond to the

sulfonate group is one involving the carboxylic acid H atom

(O71ÐH7� � �O51vii). The result is a three-dimensional

network structure (Fig. 3) with no signi®cant �±� interactions.

Compound (III) with 8-AQ [(8-AQ)+�(5-SSA)ÿ�2H2O] has

a rotationally disordered sulfonate group similar to that in

(I) [O51A±O53A and O51B±O53B, with occupancies

0.74 (2):0.26 (2); Fig. 1c], with all three O atoms of the primary

group acting as H-atom acceptors in four hydrogen-bonding

interactions. Three of these are with water molecules

(O1W� � �O53A, O2W� � �O52A and O2W� � �O51Ax) and the

fourth is a much weaker bond to the 8-amine group of an

inversion-related 8-AQ cation (N81� � �O51Axii). This last

interaction is the only direct 5-SSA� � �8-AQ contact. The

sulfonate±water interactions extend the structure along the a

direction (Fig. 4), while one of the water molecules also

extends the structure in the b direction through both O atoms

of the carboxylic acid group of the 5-SSA anion (O71� � �O1Wxi

and O1W� � �O72ix). The second water molecule similarly

extends the structure along the b axis through the amine and

quinolinium groups [2.768 (3) and 3.026 (3) AÊ ]. There are no

�±� cation±cation or cation±anion interactions with the two-

dimensional sheet structure, which is only weakly linked in the

third dimension via a hydrogen bond between the single

8-amine N atom (N81) and sulfonate atom O51.

The structure of the compound of 5-SSA with quinaldic acid

[(QA)+�(5-SSA)ÿ�(QA)], (IV) (Fig. 1d), is unusual in many

respects when compared with (I)±(III). Not only is (IV) an-

hydrous (although it has the previously mentioned 42 AÊ 3

solvent-free voids in the crystal structure), with an adduct QA

molecule in the structure, but also there are no formal

heteromolecular hydrogen-bonding linkages between the

5-SSA anion and either the cationic or the neutral QA species.

While both QA species have protonated hetero N atoms, one

(N12+ÐH12) is derived from the 5-SSA sulfonic acid group

and the other (N11+ÐH11) comes from a zwitterionic transfer

from the adjacent carboxylic acid group. The two carboxyl

groups are linked linearly by a single short hydrogen bond

[O112� � �O121viii = 2.478 (2) AÊ ; Fig. 5]. The two QA species

are laterally associated to form a homomeric pseudocentro-

symmetric cyclic R2
2(10) dimer through their N+H and

carboxyl O atoms [N� � �O = 2.803 (2) and 2.855 (2) AÊ ]. These

groups also participate in the usual intramolecular NÐH� � �O
associations [2.704 (2) and 2.719 (2) AÊ ]. The 5-SSA anions are

organic compounds
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Figure 1
The molecular con®gurations and atom-numbering schemes for (a) (I), (b) (II), (c) (III) and (d ) (IV). Non-H atoms are shown as 30% probability
displacement ellipsoids. [Symmetry code: (ii) x; 2ÿ y; zÿ 1

2.]



similarly propagated linearly along the a direction via strong

head-to-tail O(carboxyl)� � �O(sulfonate) hydrogen bonds

[O71� � �O51x = 2.5758 (19) AÊ ], the only heteromolecular

contact being a weak CÐH� � �O association [C62� � �O53-

( 3
2 ÿ x, 1

2 + y, 3
2 ÿ z) = 3.333 (3) AÊ ]. The QA cation and the

5-SSA anion (molecule 1) ring systems superimpose down the

b direction, with signi®cant �±� interaction [Cgm� � �Cgn and

�m,n of 3.827 (3) AÊ and 1.5 (1)�, 3.787 (3) AÊ and 3.4 (1)�,
3.678 (3) AÊ and 4.8 (1)�, and 3.661 (3) AÊ and 2.2 (1)� for

(m,n) = (1,2), (1,3), (2,3) and (3,4), respectively; numbers refer

to the six-membered rings N11±C9 (1), N12±C92 (2), C1±C6

(3) and C51±C101 (4); Cgm is the centroid of ring m, and �m,n is

the angle between the planes of rings m and n]. The result is a

sheet structure, which is linked only by these �±� interactions

along b (Fig. 5).

An usual intramolecular hydrogen bond is found, as

expected, between the phenol OH group and a carboxylate

group in the 5-SSA anion in each structure [O2ÐH2� � �O72 =

2.613 (2), 2.602 (3), 2.606 (2) and 2.605 (2) AÊ for (I), (II), (III)

and (IV), respectively]. This hydrogen bond maintains

coplanarity of the carboxylic acid group with the benzene ring

[C2ÐC1ÐC7ÐO71 = ÿ178.9 (2), 179.3 (2), 178.0 (2) and

178.8 (2)�, respectively] and is similar to but signi®cantly

shorter than that found in the structure of the parent salicylic

acid (O� � �O = 2.640 AÊ ; Sundaralingam & Jensen, 1965) and in

substituted salicylic acids generally. The carboxylic acid groups

in all structures are involved in strong hydrogen-bonding

interactions with either sulfonate or water O-atom acceptors

[O� � �O = 2.530 (2)±2.607 (3) AÊ ]. In (I) and (III), the second

(carbonyl) O atom is also involved in an interaction with a

water O atom, while in none of the structures is there any

intermolecular phenol O-atom participation. The rotational

disorder in the sulfonate group, which is present to almost an

identical degree in both (I) and (III), has not been reported

previously for 5-SSA compounds but is not an unexpected

phenomenon. However, it appears unusual in these types of

structures, where self-assembly through strong hydrogen-

bonding interactions involving the sulfonate group is a feature.

Furthermore, all four structures exhibit signi®cant intramol-

organic compounds
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Figure 2
Homomolecular stacks of QUIN cations and 5-SSA anions in (I), viewed
in the unit cell along the b axis, showing interstack hydrogen-bonding
associations (broken lines) involving the water molecules. [Symmetry
code: (ii) x; 2ÿ y; zÿ 1

2.]

Figure 3
The hydrogen-bonding associations between 8-HQ cations, 5-SSA
anions and the water molecule in (II), in a perspective view of the
packing in the unit cell viewed perpendicular to b. [Symmetry code: (vi)
1ÿ x; 1ÿ y; ÿz.]

Figure 5
A view of the partial packing of the QA cations, 5-SSA anions and QA
adduct molecules in (IV), in the unit cell viewed down b, showing the
heteromolecular stacks and inter-species hydrogen-bonding associations.
The molecule labelled is related by ( 1

2� x; 1
2ÿ y; zÿ 1

2 ) to the molecule
of the asymmetric unit.

Figure 4
The hydrogen-bonding associations between 8-AQ cations, 5-SSA anions
and water molecules in (III), in a partial section of the unit cell viewed
along b.



ecular aromatic CÐH� � �O(sulfonate) hydrogen-bonding

interactions, which maintain near coplanarity of the plane of

the aromatic ring and one of the S5ÐO53 bond vectors. This

con®guration is re¯ected in the C6� � �O53 contacts [ranging

from 2.733 (3) AÊ in (II) to 2.928 (8) AÊ in (III)] and in the

corresponding C6ÐC5ÐS5ÐO53 torsion angles [1.6 (2)� in

(II) to ÿ28.6 (4)� in (III)]. The maximum deviation from

coplanarity occurs for the two disordered compounds [viz. (I)

and (III)].

Experimental

Compounds (I)±(IV) were synthesized by heating, under re¯ux,

1 mmol quantities of 5-SSA and, respectively, QUIN, 8-HQ, 8-AQ

and QA in 50% ethanol/water (50 ml) for 10 min. After concentra-

tion to ca 30 ml, partial room-temperature evaporation of the hot-

®ltered solutions gave pale-pink prisms of (I) (m.p. 501.7±503.3 K),

large yellow prisms of (II) (m.p. 505.2±506.9 K), brown prisms of (III)

(m.p. 504.8±507.4 K) and yellow plates of (IV) (m.p. 484.5±488.1 K).

Compound (I)

Crystal data

C9H8N+�C7H5O6Sÿ�3H2O
Mr = 401.38
Monoclinic, C2=c
a = 29.194 (2) AÊ

b = 7.2253 (5) AÊ

c = 18.2715 (13) AÊ

� = 110.524 (1)�

V = 3609.5 (4) AÊ 3

Z = 8

Dx = 1.477 Mg mÿ3

Mo K� radiation
Cell parameters from 3896

re¯ections
� = 2.2±26.9�

� = 0.23 mmÿ1

T = 295 (2) K
Block, pink
0.50 � 0.40 � 0.30 mm

Data collection

Bruker SMART CCD area-detector
diffractometer

' and ! scans
Absorption correction: multi-scan

(SADABS; Bruker, 1999)
Tmin = 0.889, Tmax = 0.933

9200 measured re¯ections

3180 independent re¯ections
2770 re¯ections with I > 2�(I )
Rint = 0.017
�max = 25.0�

h = ÿ30! 34
k = ÿ5! 8
l = ÿ21! 21

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.042
wR(F 2) = 0.118
S = 1.03
3180 re¯ections
308 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(F 2
o) + (0.0645P)2

+ 2.2682P]
where P = (F 2

o + 2F 2
c )/3

(�/�)max = 0.009
��max = 0.33 e AÊ ÿ3

��min = ÿ0.23 e AÊ ÿ3

Compound (II)

Crystal data

C9H8NO+�C7H5O6Sÿ�H2O
Mr = 381.35
Monoclinic, P21=n
a = 13.236 (2) AÊ

b = 10.6515 (18) AÊ

c = 13.549 (2) AÊ

� = 119.135 (3)�

V = 1668.4 (5) AÊ 3

Z = 4
Dx = 1.518 Mg mÿ3

Mo K� radiation
Cell parameters from 2706

re¯ections
� = 2.6±25.5�

� = 0.24 mmÿ1

T = 295 (2) K
Block, yellow
0.45 � 0.30 � 0.20 mm

Data collection

Bruker SMART CCD area-detector
diffractometer

' and ! scans
Absorption correction: multi-scan

(SABABS; Bruker, 1999)
Tmin = 0.917, Tmax = 0.953

8547 measured re¯ections

2934 independent re¯ections
2255 re¯ections with I > 2�(I )
Rint = 0.063
�max = 25.0�

h = ÿ14! 15
k = ÿ10! 12
l = ÿ16! 13

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.041
wR(F 2) = 0.111
S = 1.01
2934 re¯ections
257 parameters

H atoms treated by a mixture of
independent and constrained
re®nement

w = 1/[�2(F 2
o) + (0.0576P)2]

where P = (F 2
o + 2F 2

c )/3
(�/�)max = 0.033
��max = 0.36 e AÊ ÿ3

��min = ÿ0.27 e AÊ ÿ3

Compound (III)

Crystal data

C9H9N2
+�C7H5O6Sÿ�2H2O

Mr = 398.39
Triclinic, P1
a = 6.9047 (9) AÊ

b = 9.2914 (12) AÊ

c = 14.5106 (19) AÊ

� = 73.240 (2)�

� = 84.138 (3)�


 = 79.889 (2)�

V = 876.2 (2) AÊ 3

Z = 2
Dx = 1.510 Mg mÿ3

Mo K� radiation
Cell parameters from 1719

re¯ections
� = 2.3±26.2�

� = 0.23 mmÿ1

T = 295 (2) K
Block, brown
0.45 � 0.40 � 0.35 mm

Data collection

Bruker SMART CCD area-detector
diffractometer

' and ! scans
Absorption correction: multi-scan

(SADABS; Bruker, 1999)
Tmin = 0.900, Tmax = 0.921

4662 measured re¯ections

3050 independent re¯ections
2364 re¯ections with I > 2�(I )
Rint = 0.027
�max = 25.0�

h = ÿ8! 7
k = ÿ10! 11
l = ÿ9! 17

organic compounds
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Table 1
Hydrogen-bonding geometry (AÊ , �) for (I).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O2ÐH2� � �O72 0.75 (3) 1.93 (4) 2.613 (2) 150 (4)
O1WÐH1A� � �O53A 0.80 (4) 2.07 (4) 2.761 (4) 145 (3)
O1WÐH1B� � �O3Wi 0.82 (3) 1.92 (3) 2.708 (4) 162 (3)
O2WÐH2A� � �O51Aii 0.87 (2) 1.99 (2) 2.811 (7) 156 (2)
O2WÐH2B� � �O72iii 0.95 (3) 1.86 (3) 2.817 (3) 180 (4)
O3WÐH3A� � �O53Aiv 0.94 (2) 1.92 (2) 2.864 (8) 179 (2)
O3WÐH3B� � �O52A 0.82 (5) 1.95 (5) 2.721 (6) 157 (5)
O71ÐH7� � �O2Wv 0.79 (3) 1.76 (3) 2.535 (3) 166 (3)
N11ÐH11� � �O1Wiv 0.93 (3) 1.75 (3) 2.670 (3) 173 (3)

Symmetry codes: (i) 1
2ÿ x; 1

2� y; 1
2ÿ z; (ii) x; 2 ÿ y; 1

2� z; (iii)ÿx; y; 1
2ÿ z; (iv) x; yÿ 1; z;

(v) x; y; zÿ 1.

Table 2
Hydrogen-bonding geometry (AÊ , �) for (II).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O2ÐH2� � �O72 0.83 (6) 1.88 (6) 2.602 (3) 146 (2)
O81ÐH81� � �O1W 0.82 (3) 1.77 (4) 2.585 (3) 169 (3)
O1WÐH1A� � �O51vi 0.89 (4) 1.86 (4) 2.748 (3) 179 (4)
O1WÐH1B� � �O52vii 0.83 (4) 2.02 (4) 2.832 (3) 166 (3)
O71ÐH7� � �O51vii 0.83 (4) 1.79 (4) 2.607 (3) 169 (3)
N11ÐH11� � �O81 0.90 (2) 2.21 (2) 2.658 (3) 110 (2)
N11ÐH11� � �O53viii 0.90 (2) 1.99 (3) 2.733 (3) 140 (2)

Symmetry codes: (vi) 1ÿ x; 1ÿ y;ÿz; (vii) 3
2ÿ x; yÿ 1

2;
1
2ÿ z; (viii) xÿ 1; y; z.



Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.041
wR(F 2) = 0.098
S = 0.96
3050 re¯ections
308 parameters

H atoms treated by a mixture of
independent and constrained
re®nement

w = 1/[�2(F 2
o) + (0.0502P)2]

where P = (F 2
o + 2F 2

c )/3
(�/�)max = 0.008
��max = 0.33 e AÊ ÿ3

��min = ÿ0.31 e AÊ ÿ3

Compound (IV)

Crystal data

C10H8NO2
+�C7H5O6Sÿ�C10H7NO2

Mr = 564.52
Monoclinic, P21=n
a = 8.3173 (10) AÊ

b = 11.2674 (14) AÊ

c = 26.245 (3) AÊ

� = 94.284 (2)�

V = 2452.6 (5) AÊ 3

Z = 4

Dx = 1.529 Mg mÿ3

Mo K� radiation
Cell parameters from 4705

re¯ections
� = 2.4±27.4�

� = 0.20 mmÿ1

T = 295 (2) K
Block, yellow
0.45 � 0.30 � 0.30 mm

Data collection

Bruker SMART CCD area-detector
diffractometer

' and ! scans
12 592 measured re¯ections
4316 independent re¯ections
3671 re¯ections with I > 2�(I )

Rint = 0.021
�max = 25.0�

h = ÿ9! 9
k = ÿ11! 13
l = ÿ26! 31

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.038
wR(F 2) = 0.102
S = 1.06
4316 re¯ections
381 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(F 2
o) + (0.0482P)2

+ 0.819P]
where P = (F 2

o + 2F 2
c )/3

(�/�)max = 0.001
��max = 0.27 e AÊ ÿ3

��min = ÿ0.27 e AÊ ÿ3

The sulfonate groups of both (I) and (III) were found to be

rotationally disordered, so the O atoms of these groups were

modelled over six sites (O51A±O53A and O51B±O53B), with site

occupancies [0.76 (1):0.24 (1) for (I) and 0.74 (2):0.26 (2) for (III)]

determined by least-squares re®nement. H atoms involved in

hydrogen-bonding interactions were located from a difference map,

and their positional and isotropic displacement parameters were

re®ned. Other H atoms were included in the re®nements at calculated

positions (CÐH = 0.95 AÊ ) and treated as riding, with Uiso(H) values

®xed at 1.2Ueq(parent atom). For re®ned water H atoms, the mean

OÐH distances are 0.81 (5) AÊ for (I), 0.85 (5) AÊ for (II) and

0.86 (5) AÊ for (III).

For all compounds, data collection: SMART (Bruker, 2000); cell

re®nement: SMART; data reduction: SAINT (Bruker, 1999);

program(s) used to solve structure: SHELXTL (Bruker, 1997);

program(s) used to re®ne structure: SHELXTL; molecular graphics:

PLATON for Windows (Spek, 1999); software used to prepare

material for publication: PLATON for Windows.

The authors acknowledge ®nancial support from The

School of Physical and Chemical Sciences of Queensland

University of Technology and The University of Melbourne.
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